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Part I - An Approximate Treatment (S. V. Yadavalli)



SUMMARY

v
Assuming a decelerated charged particle beam penetrating a uniform

plasma, a relation for the growth rate of electrostatic instabilities is

obtained. It is shown that the growth rate in a decelerated beam case

is always higher than in a uniform one. An experimental method of de-

termining the 4lectro/plasma frequency of the plasma and the deceler-

ating parameters,, andQ is also suggested.
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I. Introduction

In this report we treat the problem of the interaction of a charged

particle beam with a plasma, where the plasma was created originally by

the passage of the charged particle beam through a neutral gas. This

problem is of importance in connection with the experimental work now in

progress at the University of Illinois. Also, mention must be made that

some experimental work along similar lines (involving the stability of

charged particle beams) is being carried on at the Research Laboratory

of Electronics at M.I.T. under the direction of L. D. Smullin.

We will study only one-dimensional situations here with the hope

that we might be able to extend the treatment later to include the case

of a finite beam with axial deceleration.

II. Theoretical "Model"

Since in our problem the charged particle beam creates its own plasma,

one expects the energy of the beam to decrease along, say, the direction

of motion of the beam. Such a decrease in the energy of the beam is in-

corporated here according to two models, by

Case I:

assuming that the charged particle beam is decelerated exponentially,

that is, in the non-relativistic regime

u(z)ý- u e (1)

where u is the (entrance) velocity of the beam at z = 0,

a is some positive constant determinable by experiment, and

z is the pertinent spatial coordinate along which deceleration

is experienced.
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We assune further that the steady beam current is invariant with z.

Also, the plasma thus created is assumed to be uniform, and the plasma

properties are independent of z.

Case II:

assuming that the charged particle beam is decelerated according to

u(z) ý u. fl + • e- (2)

where P > 0, and a > 0.

Note that according to the model of Case II, the beam has some

finite energy at z = o, because

u(z) - u (1 + P), and

lim z- 0

u(z) -- u
lim z--)a

It will be further assumed in this case, just as in Case I, that the

beam current is invariant with z, and that the plasma properties are

uniform and independent of z.

III. An Approximate Treatment

In this part of the report we will consider only Case II. In Part II

of this report, H. H. C. Chang has treated both the cases in a more

rigorous fashion.

Let us now proceed with the discussion of Case II. We assume a de-

celerating (non-relativistic) electron beam penetrating a plasma. We

assume here that the charged particle beam is of such low density that

All transverse variations of quantities will be neglected here.
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it does not affect the properties of the "plasma" medium through which it

traverses. It is assumed that the beam and the plasma are "well mixed."

Let the velocity of the beam be u; then,u~z) =u'] (3
u(z) [ u 1 + P e-C] + vb(z, t) (3)

where v(z, t) is the perturbation in velocity. Assuming only electric

fields, we may write the force equation in linearized form as

VA b
-6--u0 e)0 TIE (4)

iwt - ikz
Assuming that all perturbation quantities vary as e

Eq. (4) may be written in the form

ib+ uO1 +ý e ikv-Uo e-) - [E(z) + E(z, t)] (5)

*ý b Pi ej -i b- o;e(5

where E(z) is the "equivalent" electric field causing the deceleration,

and i(z, t) is the perturbation in the electric field.

Then,

iWvb + UJl + 0 e) -ikvb TI rE (a

and
Ul0 l + P e-C)Z ý-,uc e0 Z C4 --c 91(z) (5b)

Eq. (5a) is the one of interest to us, which may also be written as

A i 'E
vb - kUo(l + (6)

A bP
Using the equation of conservation of charge, V * b=-
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and the fact that the unperturbed beam current is independent of z,

which means that p(z)* = I + 0 e- 0z)-1 , we obtain

A -k vo b(l+ P e-•
Sw+ (7a)

or -i^ -iýA ko1+ e-02)

Pb= -')I e (7b)

f - kuo(l + P e

Eq. (7b) is obtained by substituting Eq. (6) in Eq. (7a). In the one-
A **

dimensional treatment here it is legitimate to write E -

and obtain

kl 2 
-O e- ) -1

S2(l (8)

tw -uo + e-lý

The following comments are in order. In the plasma we assume

equal numbers of ions and electrons, and as the ions are considerably

heavier than the electrons, we assume that only the electrons 2.n the

plasma contribute to any current due to their motion. Or,

(p)A A

PO vp Jp (9)

where po(p) is the unperturbed charge density (of electrons alone) in

the plasma.***

p(z) is the charge density of the beam.

Sis essentially an electrostatic potential.

This charge, however, is assumed to be neutralized in the plasma by

Ions. A-so, v, Pp, and J are the perturbed velocity, electron

charge density and current in the plasma respectively.
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Employing the equation of continuity

A (p) A
iUPp oikp° p

we obtain A kP o(P) A

p P v (10)

From the force equation, we have

A A
iuv = -nE = lik? (I1)P

or, 2 A 'p
A k ý Po

Pp W 2 (12)

One may then write Poisson's equation

= 1b + , and obtain

after some simple algebra that

1 /E 4 +-- 0- = 1 (13)

1w [- kUo (I + Pez)] 2 +zo2 W

After a little algebra, we find that

3/2 + (14)
Uo 0 U o 3/2 (l-a 2/ )p

where = (i + • e-z)

2

U.) = - P0/CU2 = 7P(P)/C

p 0 0

1b and w p are the "electron" plasma frequencies of the beam and

the plasma, respectively.
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Eq. (14) is the desired relation for the wave number, k. The growth

rate is given by the Im k, and

Im k - b 1 (
U 0 + P e~~ ii C

Note that the growth rate is always higher in the case of a de-

celerated beam than a uniform beam, other things being the same.

Finally, it may be added that by making measurements at three dif-

ferent frequencies, w1 , 1 2 1 and (3 say, the three unknown quantities,

wp, p , and a, can be determined experimentally.

This can be seen readily when one calculates an "average" value of k,

<k>, over some distance z L (not too large), say where <k0 l k(o) +
2

k(L))
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Part II - A More Rigorous Approach (H. H. C. Chang)



SUMMARY

The stability of a non-relativistic beam of charged particles in-

jected into a cold plasma is studied by means of the macroscopic equations

which have been so useful in analyzing microwave tubes in the small sig-

nal approximation. In this approach, the simplifying assumptions are made

that all quantities of interest vary only in the z direction and that they

consist of a d.c. component and a much smaller a.c. component. In par-

ticular, I0, the d.c. component of the beam current, is assumed to be

uniform and infinite in extent in the z direction, while vo, the d.c. com-

ponent of the beam velocity, and po, the d.c. component of the charge

density, vary with z but in such a manner that Io = p v is constant. To

justify the neglect of the boundary effects of a beam of finite radius

'a', it is assumed that k±a is much greater than unity, where k- is the

transverse propagation vector. For low beam densities, collisions be-

tween the beam and the plasma are negligible. The plasma is assumed to

be fully ionized and only collisions between the electrons and the ions

are taken into account by V, a velocity-independent collision frequency

parameter. Collisions between like particles and thermal effects in the

cold plasma are both neglected. In Case I, it is assumed that v =
0

Voexp(-az) and in Case II that v = V [1 + P exp(-az)]. The solution of

the dispersion relation is discussed in some detail for the special case

of wave propagation in the beam direction. The general case when the

propagation vector makes an arbitrary angle with the beam direction is

considerably more complicated, and with certain approximations holding,

the dispersion equation is shown to be an algebraic equation of sixth

10
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degree in w, the wave frequency. Extension to the case of a relativistic

beam is discussed briefly, and it is indicated that the MHD approximation,

upon which the present discussion is based, is invalid for presently

attainable beam currents.
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In this paper, the stability of a non-relativistic beam of charged

particles injected into a cold plasma is studied. The beam is confined

to move in the z direction only and is infinite in extent in that direc-

tion. It is uniform in the xy plane and its radius is 'a'. Boundary

effects are neglected by assuming that %,/a is much less than unity,

where X1 is the transverse wavelength [1]. This model has been used with

considerable success by tube engineers in analyzing microwave, beam type

devices. Invariably a sufficiently strong longitudinal magnetic field is

assumed to be present to prevent the spreading of the beam due to space-

charge repulsion of the electrons of the beam. To keep the analysis

tractable, only small signal phenomena will be discussed. This means

that the system is perturbed very slightly from an equilibrium state and

that all electrical quantities such as v(z), the beam velocity, I(z), the

beam current density, p(z), the beam charge density, and the electromag-

netic field vectors are the sum of a d.c. term and a much smaller a.c.

term. Linearization of the relevant equations is justified if the ratio

(a.c. term)/(d.c. term) is always negligible compared to unity. Col-

lisions between the beam and the plasma are proportional to the beam

current, and for the low beam current that interests us, such collisions

may be neglected. The plasma density is sufficiently high so that

electron-ion collisions within the plasma must be taken into account by

v, a velocity-independent collision frequency parameter. Collisions

between lile particles and thermal effects in the plasma are neglected

in this rough calculation. With these simplifying assumptions, we are
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studying the stability against small displacements of a beam that is

penetrating at a non-relativistic velocity v(z) another fully ionized

medium, the plasma. This model patently applies to microwave beam devices

and certain astrophysical and thermonuclear reactor situations.

I. Non-Relativistic Beam

We begin by writing the pertinent equations governing the dynamics

of the beam. Let1

I(z) = I° + I (z)exp(jat), (1)

p(z) = Po(Z) + Pi(z)exp(jwt), (2)

v(z) = v (z) + v (z)exp(jwt), (3)

with I = P v = a constant. (4)

In the above equations, the subscript zero denotes d.c. quantities and

the subscript one signifies a.c. quantities, which are always much

smaller than the corresponding d.c. quantities. By using Maxwell's

equations and the Lorentz force law, it is readily shown that I satis-

fies the following equation: [2]

III + (2jwVv + 3vo/vo)I1 + (2ju~v'/v2 _ - 2 /v - eI /(Emv ) )I
0 00 10 o o o0

(5)

-jwzeI E/(mv ),
0 0

where c is the permitivity of free space and Ii dll/dz. 2

1
See the Glossary for the definition of the more important symbols ised

in this report. We will use the MKS system of units.

2 Eq. (5) seems to differ from Eq. (8-35) of [3]. However, they are

actually identical. If in (5) we replace Il v and E by J , u

and E - jJW /E respectively, we will obtain Hutter's Eq. (8-35).
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To find the general solution to (5) let

11(z) = Y(z)exp(-JOT) E Y(z)G(z) S YG (6)

where z

T = 1 dz/v 0 (7)

Putting (6) and (7) into (5) we get

Y'' + 3v'Y'/v - eI Y/(cmv3) = -j)eIoE/(mv 3G) = f(z) (8)
00 0 0 0 0

Let us first find the homogeneous solutions of (8). Thus, let

yl(z) and y2 (z) be two linearly independent solutions so that the

Wronskian, W(z), defined by (9) is non-zero.

W(z) = yly 2 - y 2 y 1  (9)

The particular solution of (8) is then [4]

z z

yp(z) = -yI(z f(x)y2 (x)/W(x) dx + y2 ((z)f f(x)y1 (x)/W(x) dx (10)

ýo 0

Case I. v = V exp(-az)
0 0

Let us assume that due to collisions and other dissipative mechanisms

the beam is being slowed down so that

v = V exp(-az) , z 'O, a O. (11)
0 0

From (4) it follows that

Po = exp(az), G(z) exp(-jcDz/V) . (12)
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Physically this assumption is meaningful only for small z when the

approximation

exp(czxz) 1 ± az (13)

is a good one. Upon inserting (11) into (8) we find that we must solve

the following homogeneous equation for y1 (z) and y 2 (z).

Y' - 3cxY' + b exp(3az) Y = o, (14)

where b = -el 0 2/(mV0 ) = 2/V (15)

We note in passing that if a = 0, the case of no steady electric field

or energy loss, (14) becomes

Y,, + 2 y/v2 = 0 (16)p 0

This case has been discussed by Smullin in Reference 2. To solve (14)

for a 4 O, set

Y(z) F(exp[tz]) = F(s), s = exp(tz) (17)

Further, if = 30/2, (14) becomes

d2F 1 dF 4bF
ds + - 2 0, a P 0 (18)

ds 9a

In Jahnke-Emde, p. 146, the solution of (18) is given as

F(s) = sZ (a S), ao = 2 p/(3aVo) , (19a)

where

Zn (x) = AJn (x) + BN n(x) (19b)

is the cylindrical function and Jn (x) and N n(x) are the Bessel and
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Neumann functions of order n respectively. For convenience we write the

solution of (14) as

Y(z) = UZI(u) , (20)

where

u = a exp(3cxz/2) . (21)0

It follows from (19) and (20) that the two linearly independent

solutions of (14) are

yl(z) = uJ 1 (u) and y 2 (z) = uN1 (u) (22)

with u given by (21). The non-vanishing Wronskian, (9), is

W(z) = 3xu 2/, . (23)

With v given by (11) and u by (21), f(z) of (8) can be written0

f(z) = -a Eu 2 /G, a, = 9 jan2Ioe/(4nm 2pV (24)

a1  0jize( V (24)

Putting (22) and (24) into (10) and assuming that E is a constant

independent of z, we get

y (Z) - ta [J (U)S (z) - NI(U)SI(z)] (25)
p 3 1 21 1

where /z uJl(u) dz) oz uN I (u) dGz)
SI(Z) = I S 2J(Z) = I N1  d (26)

1 J G(z) 2 J _)0

It is easily shown that v 1 (z) is obtained from 11 (z) in the fol-

lowing way: [2]
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V

vl(z) = 1- (I(z) - JVoIj(z)/a) (27)
0

jv2GjvG dY

WI dz
0

Upon inserting (11) and (20) into (27), we obtain v (z), the homo-' ih

geneous solution of the differential equation which v 1 (z) satisfies.

V1 (z) = - a 2 exp(az)G(z)[iAJ (u) + BN (u)] (28)

where

a 2  = 2ju) /(3cIo C) (29)
2p 0

From (6) and (20), I (z), the homogeneous solution of (5), is' h

I (Z) = uG(z)[AJ (u) + BN (u)] . (30)

To determine the constants A and B, we define zI and z2 by

z = Z T = T u = uI N(U) = 0, (31)

z = Z2 T = T2 u = u , J o(U) 0. (32)

With Ih (zl) and v1 (z 1 ) known from measurements, it follows that
h Ih

A = Ih (z )/[u 1 (u )G(z )] , (33)

B = -v h(z2)exp(-zz 2)/[a2 N o(u 2)G(z 2)] (34)
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The general solution of (8) is

Y(z) = u[AJ (u) + BN (u)] + y p(Z) , (35)

where yp (z) is given by (25) and u = a exp(3iz/2) . From (6) the

general solution of (5) is

I (z) = Y(z)G(z) = u[AJ (u) + BN (u)IG(z) + g(z)E, (36)

where
- nalUG(z)

g(z) = 1(u [Nl(U)Sl(Z) -Jl(U)S 2 (z)] , (37)

and S 1 (z) and S 2 (z) are defined by (26). This concludes our description

of the beam, and we will now describe the behavior of the plasma.

Let the cold plasma consist of electrons of mass m and ions of

mass M, which are at rest in equilibrium with densities n and No)

respectively. In the absence of an external magnetic field, an elec-

tric field, E, causes a current, I p, to flow in the plasma, where

e 21_e 2--
jCp = Eý _ + W E = It E • (38)

2 2( 2 (n o2e2/
W n = noe + M)/(cmM) . = (n - N ) e /[E(nom + NoM)] (39)

and V is the velocity-independent collision frequency between ions and

electrons.

As is well known, E satisfies [6]

-x[• x ]+ L E -2 [1 + 1 (40)
c cc
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In (40), 1b is the beam current, and from (36) and the one-dimensional

model we are dsing

I b = g(z)Eze z (41)

For small displacements, the equations governing the dynamics of

the beam are linear, and one can Fourier analyze the motion and thus re-

gard an arbitrary displacement as a superposition of waves. From the

value of the displacement and of its rate of change at every point in

space at a given time, combined with the dispersion relation, to = M(k),

one can then calculate the subsequent behavior of the system.

Lut us seek solutions of the form exp(j[at - Y I.]) . Formally

we may replace V by -j1c and by jw. With these substitutions (40) be-

comes

k2 _ 2W (2 + wt k ÷ / (Ec2) = . (42)
22( 2

c c /

Orient our coordinate axes so that k = ke + k e Putting (41)

into (42) we obtain the determinant (43) for the desired dispersion rela-

tions.
22 2 2 0 - Ck k

c k z +C-U +t 0t =0

2 22 2 2-ckk 0 c -k + Wt + jWg(z)/E

(43)

Eq. (43) can be solved explicitly for the case of wave propagation

in the direction of the beam (z) axis, when k = 0. In this special
x
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case we find that

2 2 2k2= t + ck (44)

is a double root, and

2 2
S= W2 + jwg(z)/e (45)

t

is a simple root. From (15), (24), and (37), (45) can be written

C= t[1 + 2 uG(z)(N (U)S (Z) - J (U)S (z))] 1/2 (46)
t 4 1 1 1 2

We are interested in the stability of the beam-plasma system against

small disturbances excited at t = 0. As we have assumed the time de-

pendence to be of the form exp(jct) and k = 2v/% is assumed to be real

and positive, growing waves are indicated by the roots cu = w(k) of the

dispersion equation, (43), which have negative imaginary parts. Eq. (44)

contains no reference to the beam parameters and relates only to the

properties of the plasma. In particular, it contains no beam convection

term, kv 0 kVo, and if V = 0 it has real roots only. If n = N and

2 2 2m/M << 1, W . = 0 and w = W = n e /(Em) and (44) is identical with the1 e p o

dispersion relationship for transverse oscillations in a plasma 7 .

For both V/Awl << 1 and V/kwI >» 1, it can be verified that the imaginary

part of w is positive. We conclude that in the absence of the beam, the

plasma can support electromagnetic waves. This is physically reasonable,

for the dissipative effects of collisions in the plasma can only lead to

the damping of these waves.
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In order to be able to discuss the roots of (46) we must obtain an

approximate expression for the denominator of the right hand side valid

for small z. Using the following approximations,

u = a exp(3az/2) - a (1 + 3az/2)0 0

Jl(U) J(a) +-a- [aoJo(ao) - Jl(ao)]

3xa2 z (47)

uJ1(u) A aoiI(ao + 2 0 o(a

z z

T =o dz/v - exp(az) dz - (e -1)=
0 V JCIV

0 o 0 0 0

a lengthy but elementary calculation shows that (46) can be written

approximately as

2 2
2[L + ----P ( 2(e-jpz - 1) + jpz(3e-jpz - 2))] = e2 + - Ce (42 i 1-2jV/1 (48)18cD

2 2
where w = CU/V and ) = ne /Em. For further information about the rootso p

of (48), we require the following approximation to be valid:

exp(-jpz) - 1 - jpz (48')

Substituting (48') into (48), the dispersion equation becomes

W3-(iv + jCD 2 z/1V) )w 2  IC 2 +W2 +Z 2 %)(8V )]a)+, J1W = 0 (49)
p 0e i p 0

In the absence of collisions v = 0, and (49) has solutions u = 0 and

4z = cu where w satisfies
0 0

2 2 2 2
W - jzr W 0 /(18Vo) - Ce - Czi = 0 . (50)
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2 .2 2
For small z, W o W + i . When V/w << 1, we can write

o/eoi a

W o (1 + g/uD ), t/Wo 0 10 0 0

Upon substituting this into (49) and using (50) we learn that
2

0+ (51)

0

The last result means that for wave propagation in the direction of the

beam axis and when v/w° 0 v/-\, c + 4) is negligible compared to unity,

the beam-plasma system is stable against small perturbations.

In a fully ionized plasma, three types of interactions between the

charged particles are occurring: electron-electron, electron-ion, and

ion-ion interactions. We have assumed for simplicity that the electron-

ion interactions are dominant and characterized them by a velocity inde-

pendent collision-parameter V. The collision frequency of the components

of a plasma is a complicated subject which requires careful discussion.

For our purposes, we follow Delcroix's book, INTRODUCTION TO THE THEORY

OF IONIZED GASES, where on page 111, we learn that

V = 4nwl(po2 )av log[h/p ] (52)
av

This formula shows that V can take on a large range of values by varying

n, the number density, and/or T, the temperature, but in such a way that

we are always dealing with a non-relativistic, classical plasma. After

specifying w , V and the domain of z, it can be shown that by varying

v, (49) can have complex roots with negative imaginary parts. In other

words, for certain values of V, the beam-plasma system is unstable.
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2 2 2
In the general case when k = k + k , (43) becomesx x

(W2 W2 -2 k2 )1l+ )C 2_C 2 )W2 2_c2 k2 2 k2 W2 _2 0
- IIl P- )c - ck(L)- L ] 0,

t t Wt x Ot

or

(Wn 2 _~ W - c 2k 2)[(l + P)W4_(22 + c 2k 2+ P(O2+ c 2k2D

2 22 2 2 22

Wt(wt + c2k2)] = (w2_ - t c2k2)F(cw) = 0. (53)

where

P(z) = P = - ,uG[N (U)S (Z) - J (U)S (z)] (54)
4 1 1 1 2 (4

Note that when k = kz, (53) yields the earlier results, (44) and (45),

the case of wave propagation in the direction of the beam axis, as is

required. Recalling (12) and the definition of P, F(Lu) = 0 is a tran-

scendental equation in w. The problem is to determine the nature of its

roots. Using (38), the explicit form of F(Lz) = 0 is

F()) -= (1 + P)w 6- 2jV(l + P)w5- ý[1 + P +y2* [2+ P](W2 + )
e 1

+~~~~ c 2 1+PCo E]W4+jvl[2 + P ](CU2 + 2W2) + 2c2 k2(l + Poos2 E)) W3

'22 4 22 4 222 2+ CW.V (2 + P) + w + 2w W. + co, + c k V (1 + P cos E)SI e e i 1

222e 2 2 22 4' 22 22

+c2k2(W + W 2)2 jV(2 2 W . +24 + c 2 k + 2 2])L0
e + e 1 ) e i

2.222 24
- c k k.V - v2 2 0. (55)

1 1

2 2 2 2
If V = 0, Cu = Wto = w + w and (55) becomes

2 2 2 2 2
F(c) = w2[(1 + P) -D4 ([2 + P]o + c2k2[1 + PcCos2e])Wo2 + W2o(to+ c k2)] = 0

to to to

(56)
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Using (6), (19), (21), (26), (47), and (54), P(z) can be approxi-

mated by

2

P(z) P--* --- [2(exp[-jwz/Vo] - 1) + j---(3 exp [-jcz/Vo]- 2)] (57)
18im2  0 V

For sufficiently small z we may use the approximation

exp(-jw/V 0 1 - jocZ/V (58)

to simplify (57) to read

. 2icp z2
P(z) - p - p p = JW2 z/i8V (59)

l8COV W c p o00

Putting (59) into (56) we learn that the dispersion equation simplifies to

24( 2 2 2o 2 2• +2k2)

2[W 4 - p3 - (2W + c2k2)2 +(p + pc2k2cos2e))( + 4t ck2 0
to to t 0t00o o o

(60)

According to a celebrated theorem in the theory of equations due to Euler

and Gauss, "Every polynomial p(z) of positive degree with complex co-

efficients has a complex root." [8]. Eq. (60) fulfills the conditions of

this theorem, and we can conclude that the fourth degree polynomial in the

square bracket has a complex root. The solution of a quartic is a

straightforward, albeit laborious process. On page 254 of Reference 2,

the standard recipe for solving quartics is given. It is patent that by

varying k = 2g/% and/or p = j p2Z/18Vo, (60) can be made to possess com-

plex roots a) = cr + jWi where cci < 0. In varying p, however, it must be

remembered that z must be sufficiently small so that the series expansions

of (47) and (58) are valid.
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A sensible procedure to follow in our search for the nature of the

roots of (56) is to first specify a, cp , and Vo. The expansion

f(a + z) A f(a ) + f'(a )z (61a)

is arbitrarily defined as a good approximation if

f'(a 0)zý
f,(a)Z - 1 (61b)f f(-ao 1=000

0

Let zl, z 2 , z and z4 be the maximum values of z which will make the ex-

pansions of (47) valid. Let z be the smallest of zI, z 2 , z3 , and z4.

In (60) we then allow z to vary between z = 0 and z = z . Upon speci-

fying e, the angle between k and the z axis and 'a' the beam radius, we

require that

k sin e << a (62)

and investigate if there are any complex roots of (60), satisfying (63),

whose imaginary parts are negative. If so, the system is unstable. How-

ever, these complex roots are sensible only if ICZo/Vol is small compared

to unity. This last requirement follows from our use of the approximate

expression exp(-jwz 0 /Vo) -1 - jazo/V to obtain (60).

When V 4 0 and with (59) holding, (55) can be written
6jr)5 2 2 2 22 2 2

Cl) - (p + 2jV)W + (2jVp - V 22(2 + C) 2 c2 k 2C4 + (PIV2 + o2 + C.
e 1 e 1

+ ÷2 2osE + 2jvcko
2 + 2W)2 + 2c 2 k

2 ])c
3 + (Z2 + c 2

• 
2 2

•2

e i 1

2 2 2 2 2 2 2 2j 2 2 2 2
-jVp(lCUe + 24oi + 2c k cos E] + -e + W )[ck + Ce + W-i ]1

-jv(2aw 2C + 2w4+ c 2k 2IC + 2w 2_j -VC p-_jVc2k2p cos~e)o

222 22

VW(c k +w.) = 0 (63)
i 1
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For arbitrary values of the coefficients of W, (63) can be solved

numerically and the nature of the roots displayed. The procedure out-

lined previously for the case V = 0 can be followed without any change.

Although this procedure is simple in theory, the actual numerical work

involved can be quite laborious for arbitrary values of V/o and will not

be carried out. A good reference on this subject which will make clear

the manifold considerations that are involved is Reference 3, Chapters

10 and 14. This concludes our discussion of the case where v V exp(-czz)
0 0

and we will continue by discussing a different dependence of v on z.0

Case II. v = V (1 + P exp[-az])

Assume that

v = Vo(1 + p exp[-az]), 0 < P << 1, a > 0 (64)

As we require that I = Po v = constant to terms of order p, we must

put

P P(l -0 exp[-az]) . (65)

I (z), the a.c. current, satisfies (5). If we put

I z(z) = Y(T)v exp (-jcoT) GY(T) (66)
0 0

where z

T d , (5) becomesJO v 00

d2y d~v elo -jec±I E

2 v 2 ' m -ýY = 0- = 1f(T) (67)o dT2od o' G

Neglecting P compared to unity and with (13) holding, (67) can be approx-

imated by
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d 2YdT (a exp(-VoT) + c 2 )Y = f (T), (68)

dT 2 3 o0 p 1

where

a 3  = 22 V 2exp Pa22v2  U2  = -eI/(cmV (69)
300 p 0 0

As before, let us first find the homogeneous solutions of (68). To this

end, let

Y(T) = F(exp[-tT]) = F(s), s = exp[-tT] , t= aV (70)

It then turns out that F(s) satisfies

2 d2F dF 1 2s -d2+ s- ds -2Ca~s + )F = 0. (71)

sds2 2 3s p

According to page 146 of Jahnke-Emde, solution of (71) is

F(s) = AJn(2' ) + BN (2 Ps ), n = 2p /t (72)
nmyp n p

The Wronskian, W(T) as defined by (9) of y 1 (T) = Jn(2-ys ) and

Y2 (T) = Nn(2\,ý ) is

W(T) = - (73)

The particular solution of (68) is, according to (10),

yp(T) - n(C) 1 J (e)exp(jcT) dT -
p n- n _-

T 2

J ()J N(8) exp(j0wr) dT - W(e) (74)

0

where e =2\-s
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The complete solution of (5), with (64) holding, is

I (z)ff - AJ (8) + BN (6) + g (z)E,
1 I, n ni

0

(75)
where 2-j7•21A G

g1 (z) - av P W(e)
0

The homogeneous solution to the equation which v 1 (z) satisfies

will be designated by v (z), as before. It follows from (27) and (75)Vh

that

Vh(Z) = 2 io° [AJ'(CE) + BNn( )] , (76)
1h 2cI n n

where Jn(E) = dJ (e)/dO . I, (z), the homogeneous solution of (5), is
n n(

I (z) = G [AJ (8) + BN (6)] (77)
1 T n n

h o

To determine the constants A and B, we define z and z2 by

z = zl, T = Ti, e = 6I, Nn(e) = 0

z = z, T = T2 , e = e2 , J'(E2) = 0

With I (zl) and vl(z ) known from measurements, it follows that

A = I (z l)V /[G(TI )Jn (0 )]

B = 20Iovlh(Z)/[e) vo2 (T2)
1 lo 1 hn2 1
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The interaction between the beam and the plasma is accounted for

exactly as in the previous case. Thus, the analysis following Eq. (37)

is applicable with slight changes in notation. Eq. (41) becomes

Ib = 91 (z)Eze z (79)

and (43) still holds with g 1 (z) replacing g(z). Eq. (44) is unchanged

and (46) becomes

[l + W P G(z)W(E")/(Vo)]/2 (80)
p

2k2 2
In the general case, when k = k2 + k z we get an equation of theX z'

form given by (55) except here we must replace P(z) by PI(z) where

2
P (Z) = %p G(z)W(e)/(OV ) (81)
1 p o

For sufficiently small z, Q and P we can obtain an approximate ex-

pression for W(e) as defined by (74). Thus by means of series expansions

similar to (47) we learn that W(e) -ON T 2/(2c) and0

2

P (Z) P (1 + 2p)(I + [1 + •] .-- )z2 (82)
1 22 V02V2 o

0

When jwz(l + P)/V is much less than unity, we approximate Pl(z) by
01

2 2
- (1 + 2p)z

P 1 (z) 2 (83)
2v

0

Putting P-- P 1(z) in (55) we get the sixth degree dispersion equation

which must be solved in order to predict if the beam-plasma system is

stable or not. As in Case I, this sixth degree equation can be solved

numerically after specifying the parameters which relate to the properties

of the beam and the plasma.
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II. Relativistic Beam

The rest mass of an electron is about one-half MEV. The kinetic

energy of an electron in rest mass units is y - 1, and when y - 1 is

much greater than unity, the previous considerations must be modified

because the neglected relativistic corrections are then important. For

a relativistic beam, examination of the equations upon which our crude

one-dimensional model is based shows that the linearized equation of con-

tinuity does not change and there is no change in Poisson's equation

unless W/k = c. [9]. To the first approximation, all we need to do to

3
include relativistic effects is-to replace m by m oy as far as the beam

is concerned. A more sophisticated and accurate treatment based on

Boltzmann's equation is given in Reference 5.

In truth for extremely energetic beams, say when y - 1 is much

greater than 100, the situation is much more complicated than just indi-

cated. For one thing, as Budker has shown, for highly relativistic

beams, radiation is an important dissipative mechanism [101. Moreover,

if the beam energy exceeds the relevant threshold energies, other ele-

mentary particles such as mesons could be produced copiously. Additional-

ly this entire discussion is essentially a magnetohydrodynamic one and

that,as Finkelstein and Sturrock [11] have shown for a relativistic beam,

the MHD approximation is valid provided the number of electrons per

classical electron radius, measured in the rest frame of the rapidly

moving electrons, is large compared with unity. In practice, this last

requirement is equivalent to the statement that the current of the beam

must exceed 17,000 y amps and this current is much greater than currents
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so far contemplated in relativistic-stream experiments.

In Reference 5, the stability of a uniform, relativistic beam of

particles injected into a plasma is studied using the Boltzmann transport

equation. The most important results which were obtained are: (1) The

beam is relativistic so that in the equations of motion the relativistic
3

masses ym and y' m appear. This makes the beam "stiff" so that magnetic

self-forces, which for non-relativistic pinches lead to kinking, are

negligible compared with electrostatic forces. (2) The velocity spread

in the beam is allowed to be appreciable so that for short enough wave-

lengths the velocity structure of the beam is important. The velocity

spread in the plasma penetrated is small. (3) As in this report, only

electron-ion collisions are considered important and are taken care of via

a velocity independent collision frequency parameter. In this important

paper, the effects of boundary conditions in a finite beam and the non-

uniform structure present when velocity gradients are significant are

assumed to be small and consequently negligible.

In Reference 12, two-stream instability in finite, relativistic

streams is investigated. The electrostatic mode is singled out for dis-

cussion, and a detailed study is made of effects associated with the

finite size and non-uniformity of the beam. An eigenvalue equation for

E z, the longitudinal electrical field, is obtained and for a weak-beam

it is shown that two-stream instability can exist only if n is real and

n 1. Here n is a function of w, v, and the plasma frequency of the

beam and is defined by Eq. (29) of this reference.
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Finally we note that in some ways a study of the instabilities of a

relativistic beam is simller than that of a non-relativistic beam. In

using a one-dimensional model to describe a non-relativistic beam it is

imperative that a large longitudinal d.c. magnetic field be present to

inhibit transverse motion of the electrons and thus keep the beam from

spreading. An extreme relativistic beam is pinched by its own magnetic

field and when the Bennett condition [11] is satisfied, self-magnetic

effects are sufficient to hold the beam together against its random

transverse kinetic energy and multiple scattering effects without an ex-

ternally applied longitudinal magnetic field. Obviously the complexity

of the analysis is strongly dependent on the parametric choices made as

to whether the skin depth is large or small compared to the beam radius

and the magnitude of the ratio Iv/cl. The various instabilities are all

means of transferring energy from the beam to the plasma substratum, and

they divide naturally into those which do and which do not depend on

edge effects--whether the beam has sharp edges or diffuse edges. A good

reference on the stability of a relativistic beam 4s Reference 13.
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GL4OSSARY

a beam radius

a constant defined by Eq. (19a)
0

aI1 constant defined by Eq. (24)

a 2 constant defined by Eq. (29)

a 3 constant defined by Eq. (69)

2/V2
b b = /V , Eq. (15)

c velocity of light

e magnitude of the charge of the electron,

e = + 1.6 x 10-1 coulomb

e unit vector in the z direction, the beam direction
z

S~intensity of the el-ctric field vector

F function of z defined by Eq. (17)

g(z) = g function of z defined by Eq. (37)

G(z) = G G = exp(-jwT)

I beam current, I(z) = 1I° + 1I1(z) exp(jwt)

1 d.c. component of beam current

1 1(Z) II a.c. component of beam current

I1 I' = dIl1/dZ

.2j imaginary unit, j 1 -

J (z) Bessel function of order n

k propagation vector

k~l z component of k, kul = k cos E)

k-1 normal component of k, k.L = k sin 0

m electron mass

M ion mass
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n number density of electrons of the plasma0

N number density of ions of the plasma0

N (z) Neumann function of order n
n

p quantity defined by Eq. (59)

P(z) = p quantity defined by Eq. (54)

s variable defined by Eq. (17), s = exp(tz). Also

s = exp(-VT)

S1 , S 2  quantities defined by Eq. (26)

t time Z

T T dz/v

o 0
0

u1 variable defined by Eq. (21), u = a 0exp(32iz/2)

V(z) = v velocity of the beam, v = v e ,

v = Vo + V (z) exp(ju~t)

v (z) = v d.c. com•anent of v

v (Z) = v a.c. component of v

V magnitude of v in Case I at z = 0; quantity defined0 0

in Eq. (64) related to the magnitude of v0

W(z) Wronskian, Eq. (9)

z the independent variable

Z the cylindrical function, Eq. (19b)n

a exponential decrement factor, Eq. (11) and Eq. (64)

in Case I, 5 = ci/V . • is also used as in Eq. (64)
= 2 1/2 v

c2
E permitivity of free space

t= QV0
E) angle between k and e
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X wavelength, k WX 2i/X

X XL = X sin e

%H1 II = X cos G

V collision frequency between electrons and ions, Eq. (52)

p(Z) p electric charge density, p = 0 + P1

PO d.c. component of p

W wave frequency

C quantity defined by Eq. (39)

W i quantity defined by Eq. (39)

M p plasma frequency, Eq. (15)

W t quantity defined by Eq. (39)

2 2 2LI) l = CD +LD.
0 0 e 1
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